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The advantages of solving potential problems using an overdetermined boundary integral 
element method are examined. Representing a 2-dimensional potential solution by an analytic 
complex function forms two algebraic systems from the real and imaginary parts of the 
discretized form of the Cauchy theorem. Depending on which boundary condition is 
prescribed, the real or the imaginary algebraic system is diagonally dominant. Computations 
show that the errors of the strong system (diagonally dominant) often have almost the same 
value as those of weak system (diagonally non-dominant) but with the opposite sign. The 
overdetermined system, composed of the combination of the real and imaginary parts, tends 
to average these errors, especially for circular contours. An error analysis and convergence 
studies for several geometries and boundary conditions are performed. A methodology for 
handling computational difficulties with contour corners is outlined. A further modification is 
proposed and tested that shows exponential convergence for circular contours. 0 1989 

Academic Press, Inc. 

1. lNTRo~ucT10N 

The boundary integral method (also called the panel method) is powerful for 
solving potential problems. The computational domain becomes the enclosing 
boundary, reducing the effective dimension of the problem by one. This significantly 
decreases the computational effort unless the contour is highly contored. 

Boundary integral methods are usually derived from Green’s theorem with an 
appropriate free-space Green’s function. The solutions of 2-dimensional potential 
problems discussed here can be described by a complex analytic function. The 
boundary integral method can then be formulated from Cauchy’s integral theorem 
(Greenhow, Vinje, Brevig, and Taylor [ 11, Lai and Hromadka [2]), resulting in 
two real algebraic systems. The elegance and simplicity of complex analysis carries 
over to computations as well. While the Green’s function formulation and the com- 
plex method are not directly compared here, Dold and Peregrine [3] indicate that 
the latter method (from [l]) is clearly superior. Schultz [4] shows that the error 
of the complex formulation can be further reduced by solving these two systems of 
equations in a least-square sense for nonlinear breaking wave simulations. 

In general, an integral equation is solved by a numerical model that assumes the 
boundary is composed of piecewise-polynomial curves (panels) and the known and 
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unknown boundary values are approximated as piecewise-continuous functions 
along the boundary. The truncation error in solving an integral equation is deter- 
mined by the approximations of the boundary shape and the known and unknown 
function values on the boundary. A rather extensive error anlysis of the conven- 
tional boundary integral method for a 2-dimensional Neuann problem is given by 
Hess [S]. He shows that using parabolically shaped elements with linearly varying 
singularity improves the accuracy when the effects of local element curvature are 
greater than that of the function derivatives. Unlike the Green’s function formula- 
tions, the complex method does not depend on the shape of the contour between 
nodes. Most complex variable boundary integral methods adopt piecewise-linear 
representations of the complex functions. This linear interpolation results in second- 
order accurate integration and typically gives second-order accurate solutions for 
the boundary integral solution as well. 

The accuracy of the numerical solution is affected by the contour shapes, types 
of boundary conditions, nodal spacings, and the possible singular behavior of the 
resulting solutions. Moran [6] shows poor convergence for a sharp-angled contour 
(such as an airfoil) even when the solution there is smooth. Singularities usually 
occur at an abrupt change in boundary conditions or at boundary corners [ 121. 
The solution accuracy then further degrades unless special precautions are taken 
such as supplementing the piecewise-linear representations with singular functions 
c71. 

In this paper, the error is analyzed for the complex variable boundary integral 
method using elements with linearly varying functions for several cases. The advan- 
tages of solving both sets (real and imaginary) of algebraic equations together in a 
least-square sense are discussed. The integration error analyses show the correlation 
between solution error and factors such as geometric curvature, nodal spacing, and 
local solution gradients. We also present further modifications in Section 6 that 
show exponential convergence for smooth contours. 

2. CAUCHY BOUNDARY INTEGRAL FORMULATION 

Cauchy’s theorem is used to derive an integral equation in terms of the complex 
potential. The complex potential, /I, is analytic inside the computational domain, R, 
and is given by 

B(z) = 4 + 4k (1) 

where 4 and I+$ are real functions that can be identified as the velocity potential and 
stream function, respectively, for ideal fluid flow problems. The 2-dimensional 
spatial representation is given by z = x + iy. 

Figure 1 shows the problem domain and bounding surfaces. Cauchy’s theorem 
gives 
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ak, 
FIG. 1. Domain and bounding surfaces. 

where c1 is 0 or 271 if the location of the kernel singularity, ik, is outside or inside 
the boundary, respectively. If the kernel singularity is on the boundary (ik E 8R), a 

is equal to the included angle, and the integral is treated as principal-valued. For 
most of our computations, we take ik to approach the boundary from the outside 
of the domain so that a is zero. The algebraic system is formed by discretization of 
the integral as explained in Section 3 and letting the kernel singularity approach 
each of the N nodal points, ck + zk. Then a special limiting process is needed to 
evaluate the integration near ck. 

The boundary contour t3R is composed of aR, and aR,, where $ is given on i?R, 
and II/ is given on aR,. For the problem to be well posed, either 4 or Ic/ must be 
specified along the entire boundary. This is related to the Dirichlet or Neumann 
problem, respectively, in the standard formulation. Although generalized (Robin) 
boundary conditions can be included in these computational schemes, we do not 
study them here. Hence, the boundary can be categorized as the following two 
types: 

Re{B) =i is given on dR, (3) 

ImiPl=+ is given on aR,. (4) 

When the boundary condition is given exclusively as either 4 or tj along the 
entire boundary, the solution is not unique since an additional real or imaginary 
constant can be added to the solution. This is related to a solvability condition for 
the Neumann problem. Therefore, an appropriate additional condition (or replace- 
ment condition if the problem is not to be overdetermined) is required. We have 
found that replacing the boundary condition at one point (assuming 4 is known at 
every point except one, where $ is known) yields much less accurate results. There- 
fore the results we present here use an additional condition and hence all algebraic 
systems are overdetermined, although sometimes only by one extra equation. 

To examine the corresponding singularity system in the standard formulation, 
the integrand in (2) can be rewritten as 

q5ere *e’” ds 
-&+i--- 
Z-5k Z-L ’ 
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where 8 is the tangent angle of the boundary with the positive x axis. Hence, the 
contribution from the above differential element to the complex potential inside the 
domain is given by 

(6) 

This relation shows that the integral equation (2) is equivalent to a system of 
distributed normal dipoles with strength $ and tangential dipoles of strength 1(1 on 
the boundary. However, we can represent the potential field by using only one of 
the dipole systems, following the concepts of the indirect boundary integral method. 
(In the indirect method [ 161, the computational unknowns are the strengths of the 
distributed singularities, rather than the original solution as in the direct method.) 
Baker et al. [S] show that dipole distributions are more stable than source or 
vortex distributions for nonlinear breaking wave simulations. We could formulate 
a complex integral method similar to a combination of the sources and vortices by 
introducing, for example, a logarithmic singularity into (2) rather than the simple 
pole. Our preliminary numerical studies indicate that the pole in (2) performs better 
than other singularities, including higher order poles. 

3. NUMERICAL MODEL 

Both the boundary contour and the complex potential are represented as 
piecewise-linear functions. Let zj and /Ij be the location and complex potential at 
the jth node point. Our numerical model assumes fi on jth panel can be described 
as 

We can choose ck of Eq. (2) at any point on the kth panel. Although the panel 
midpoint and the node point are favored equally as ik points, results where ck is 
the node point are presented in this work. Our studies show no significant differen- 
ces in accuracy and convergence rates between those two cases, hence we choose 
the endpoints since it is easier to code. We also have studied a more over- 
constrained problem by placing control points at the node points and the midpoints 
and have found no significant improvement. In Section 6 we examine the advan- 
tages of moving [k away from the contour. 

Letting ck approach each node from the outside, yields the algebraic equivalent 
of (2) approximated as [ 1 ] 

f piI-,= for k = 1, . . . . N, (8) 
j=l 

581/84/2-11 
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Equation (9) is evaluated using L’Hospital’s rule when j = k + 1 or k - 1. Moving 
the unknown boundary conditions to the right-hand side gives the following 
complex algebraic system for unknown bj or tij,,.: 

c rjk$bj+ijE;Rbrjk$j= - c rjk(bj-i 1 rjk+j for k=l,..., N. (11) 
ieaR) jedR/ jeaR$ 

rjk represents the influence of the kth node kernel singularity on the jth node 
complex potential pi. In general, rk- l,k, and r, + I,k have the dominant influence 
on kth equation except for contours that are not convex or have sharp cusps. The 
imaginary part of rkk is nearly -rr and the real part is nearly zero for uniformly 
spaced nodes on smooth parts of the contour, and exactly -X and zero, respec- 
tively, for flat contours. On the other hand, the imaginary parts of rk_ i,k and 
r kf 1,k are nearly zero while the real parts are not small. 

Choosing the imaginary parts of system (11) for the k th equation, where II/ is 
given and the real parts where 4 is given, results in a system matrix with a strong 
diagonal. Taking the other systems results in a system matrix with a weak diagonal. 
We now refer to the former system as the strong system and the latter system as the 
weak system. The strong system is very similar to a Fredholm integral equation of 
the second kind and the weak system is similar to a Fredholm integral equation of 
the first kind. As indicated in the introduction, we solve the weak and strong 
systems together as an overdetermined system in a least-squares sense and compare 
these results to those obtained from the individual systems. 

4. TRUNCATION ERROR IN NUMERICAL INTEGRATION 

The truncation error in the numerical integration is analyzed for the case of 
uniformly spaced nodes. In general, the dominant truncation error in (2) for the 
kth control point occurs in the integration from z = zk _, to z = .??k + , , as shown in 
Fig. 1. We rewrite this part of the integral (2) as 

For uniformly spaced nodes with slowly varying geometric curvature, we can 
examine the integral Zk by expanding p(z) at z = ck as 

p(z) = b(ik) + fi’(ik)(Z - ik) + tb”(&,(z- ik)2 + o(lz - iki3). (13) 
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Using (12), Eq. (11) can be written as 

z,=zIp’+zp-tzy’+ O((z-(,13) 9 (14) 

where 

(15) 

and 

ZY’ = B’(Lc)(Zk + 1 - Zk- 113 (16) 

ZP’ = WKk)C(Zk + 1 - zk)* - (Zk - 1 - z/J*]. (17) 

Since our numerical model assumes fi varies linearly between nodes, the dominant 
truncation error in the integration of Zk is I, . (2) Since the error of the integration is 
dependent on the square of the nodal spacing, we would expect the convergence of 
the solution of the integral equation to be second order as well or O(l/ZV2). It can 
easily be shown that this dominant error term is cancelled when the contour is 
straight for three consecutive, equally spaced nodes. Hence it will come as no 
surprise that the boundary integral equation can be solved more easily when the 
contour is flat (or at least smooth) and the nodal spacing is uniform. We can also 
use the information on the dominant truncation error to improve the solution at 
corners (see Section 5.5). 

For the special case of equally spaced nodes on a circular contour, i.e., 
zk = exp(2nik/N), the dominant error becomes 

ZP)=ifi”(&) 
[ 

sin:-2sin$ =O(l/N3). 1 (18) 

This indicates that the most dominant error term for this case comes outside the 
range of integration of (11). For this special case, we will show from numerical 
experiments that handling the boundary integral equation in a special way will 
change the expected second-order convergence to fourth order. 

When p is linear, the integration is exact and the integral equation algorithm 
gives exact solutions. In Fig. 2, a very strong correlation between Re{Zy)} and the 
solution error ( tiComP - $,,,,,) is shown for a solution domain inside a circular 
contour with uniformly spaced nodes when 4 is given as Re{sin z}. The correlations 
are nearly 1.0 and - 1.0 for the weak and strong systems, respectively. Figure 3a 
shows that the strong and weak systems give approximately the same errors but 
of opposite sign. The error distribution along the same contour for another test 
function, in which p = e’, is shown in Fig. 3b. 

The results for a problem when the solution domain is outside the unit circle is 
given in Fig. 3c. This example represents a dipole in a uniform potential gradient. 
The imaginary part of the potential should be zero on the unit circle. To solve this 
problem, the uniform part must be subtracted so that there is no contribution from 
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FIG. 2. Correlations between error and Re{Ii*‘) (circular contour, inner problem, p= sin(z), 4 is 
given): squares-weak system; triangles-strong system; circles-overdetermined system. 
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FIG. 3. Error distributions for uniform spacing on circular contours: dotted line-strong system; 
dashed line-weak system (overdetermined system errors not shown because they are too small at this 
scale). (a) Inner problem, /I = sin(z), 4 is given; (b) Inner problem, fl= exp(z), 4 is given; (c) Outer 
problem, /I = z + l/z, 4 is given. 
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FIG. 3-Continued 

the contour at infinity. A branch cut is chosen to connect the contour at infinity to 
the circular contour, which is then integrated in a clockwise sense. All examples in 
Fig. 3 show the typical error cancellation characteristics of the overdetermined 
system. The overdetermined system averages the errors of weak and strong systems 
so that the error distribution curves of the overdetermined system are nearly collapsed 
to the abscissa and hence not plotted. Other calculations show that this error 
cancellation for the outer problem is nearly complete when the dipole is moved 
from the origin but still well inside the contour. 

It is noteworthy that the solutions of the weak system sometimes show small 



422 SCHULTZ AND HONG 

oscillations with wavelengths twice the nodal spacing, as shown in Fig. 3c. This 
common zig-zag instability is due in part to the nearly singular matrix. At times, 
when this numerical instability becomes large, the weak system matrix becomes so 
numerically singular that direct inversion is no longer possible. Then iterative 
refinement is required. As described in the next section, we use an iterative proce- 
dure to solve the algebraic system. When the zig-zag instability becomes quite large, 
the number of iterations increases significantly. Often improved solutions (with 

7 
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FIG. 4. Error for elliptical contours (e =0.9165, inner problem, /I =sin(z), 4 is given): (a) Error 
distribution: dotted line-strong system; dashed line-weak system; solid line+verdetermined system. 
(b) Corrleations between error and Re{IP’}: squares-weak system; triangles-strong system; circles- 
overdetennined system. 
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TABLE I 

Correlation Number between Error and Re(llf)) 

Eccentricity Weak Strong Overdetermined 

0.0 0.9997 
0.6 0.9745 
0.8 0.9075 
0.9165 0.8367 
0.9798 0.4809 

Nore. Ellipse, inner problem, j = sin(z), q3 given. 

-0.9986 0.1915 
-0.9711 0.3292 
-0.8845 0.5856 
-0.7974 0.6133 
-0.7767 0.6451 

smaller oscillations) are achieved with fewer iterations (less rigorous convergence 
criteria). This behavior was never seen for the strong or overdetermined systems. 

For noncircular contours, the errors contributed from off-diagonal elements grow 
as the local geometric curvature increases. Figure 4 shows the error distribution 
curve and the correlation between error and Re{Zb?} when 4 is given for an ellipti- 
cal contour with an eccentricity of 0.9165. For the examples shown here the major 
axis of unit radius is centered on the x-axis, so that the contour is given by 
x2 + y2/b2 = 1, where b is the minor axis given by b2 = 1 - e2. 

A relatively strong correlation still exists, but the error of the weak system is 
more sensitive near Re{Zi2’) = 0. In this case, the cancellation characteristic of the 
overdetermined system is no longer nearly perfect, as shown in Fig. 3. Table I 
shows the correlation numbers between the solution error and Re{ZP)} for various 
ellipses with eccentricities of 0.0 to 0.9798 (minor axes in the y direction of 1 to 0.1). 
The weak system loses its strong correlation at an eccentricity of 0.9798, where 
large spurious oscillatory behavior develops in the solution. 

We will show that the error cancellation of the overdetermined system seems 
more dependent on the variation of geometric curvature and on the nodal spacing 
than on the solution characteristics. 

5. NUMERICAL INVESTIGATION 

Comparisons of accuracy, convergence rate, and computing time are made for 
weak, strong, and overdetermined sets of system (11). Effects of nonuniform nodal 
spacing, types of boundary conditions, nearly singular solution characteristics, and 
contour shape on the solution errors are investigated. 

The overdetermined matrix problem can be solved two ways. One method uses 
a routine based on the Householder transformation [9]. This routine takes an 
order of U*V operations, where U is the number of unknowns and V is the number 
of equations. The other uses a conjugate gradient iterative technique [lo], which 
solves the problem in an order of UVL operations, where L is the number of itera- 
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tions. The computational savings of the iterative technique would be important if 
time marching were desired, especially since a good initial guess is available from 
the previous time step. However, even with a homogeneous initial guess, a typical 
solution for a nonsingular matrix requires less than 10 iterations. 

The iterative solver often takes more computing time than the Householder 
transformation method for the weak system, but the Householders method is 
inaccurate because the system matrix in this case is nearly singular. Iterative 
methods are more reliable when the system matrix is nearly singular. Here, we use 
the conjugate gradient iterative method with a zero initial iterate to compare the 
efficiency of the three systems. 

5.1. Rate of Convergence and Computing Time 

The root mean square errors (&) and corresponding computing times are 
examined as a function of the number of nodes to determine convergence rates and 
computational efftciency. The maximum errors (E,) follow a very similar pattern 
and hence are not shown. Figure 5 shows Ez for the three systems in log-log scale 
for uniformly spaced nodes on a circular contour when 4 is given as Re{ sin z}. 
Single precision (seven digits) results are limited to approximately live decimal 
point accuracy as roundoff error dominates truncation error beyond N= 32. The 
overdetermined system is more accurate by one digit at N= 16, and the 
convergence rate of the overdetermined system is twice that of the weak or strong 
systems. 

In Fig. 6, single precision computing times for an Apollo 4000 workstation are 
shown. For the same N, the computing time of the overdetermined system is the 

10-O t I I I 

2 4 6 6 

J-+ 

FIG. 5. Truncation error convergence for circular contours (inner problem, fi = sin(z), 4 is given): 
squares-weak system; triangles-strong system; circles-overdetermined system; dotted line-double 
precision; dashed line-single precision. 
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FIG. 6. Relation between E2 errors and computing times (circular contour, inner problem, b = sin(z), 
b is given): squares-weak system; triangles-strong system; circles-overdetermined system. 

largest although not by a factor of 2 as when using a direct solver. The computing 
time to solve the weak system increases rather rapidly when N> 32 as the system 
matrix becomes more singular and the number of iterations increases. Figure 6 
clearly shows that the overdetermined solution is the most efficient of the three 
systems for this example. 

The effect of the contour shape on the efficiency of inner problems is examined 
for elliptical contours with various eccentricities (e = 0.0 to 0.995) for the same /?. 

lo-’ 

w” 

1 o-5 

0 0.2 0.4 0.6 0.6 1 
contour eccentricity 

FIG. 7. E, errors for various elliptical contours (N= 64, inner problem, B=sin(z), 4 is given): 
squares-weak system; triangles-strong system; circles-overdetermined system. 
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The diameter of the major axis is fixed to be 2.0 and centered on the x axis. As the 
eccentricity increases, the E, of the overdetermined system increase, but those of the 
strong systems decrease, as shown in Fig. 7. The E2 of the weak system for 
e > 0.9165 increase due to the more oscillatory behavior of the solution. In Table 
II, the E, are given as a function of number of nodes for various ellipses. In most 
cases, the overdetermined system gives the best results, except for highly eccentric 
elliptical contours where the weak system’s oscillations affect the overdetermined 
solution as well. 

The E, convergence rates determined at the largest computed N are compared in 
Table II for inner problems for various eccentricity. Astonishingly, the convergence 
rate of the overdetermined system for a circular contour (e = 0) approaches 4.0. The 
convergence rates of all the other examples are the predicted 2.0. 

E, for outer problems, when /? = l/z, are also calculated and given in Table III 
for various ellipses (0 Q e Q 0.995) with a double precision program. The results of 

TABLE II 

E2 Convergence Rates for Inner Problem 

e System 

-LOG,,& 
Approx. 

N=32 N=64 N=l28 N=256 Conv. rate 

0.0 Weak 2.578 3.212 3.829 
Strong 2.588 3.215 3.829 

Overdet. 4.470 5.743 6.979 

0.6 Weak 2.732 3.366 3.982 
Strong 2.743 3.370 3.984 

Overdet. 4.646 5.399 5.997 

0.8 Weak 2.880 3.518 4.135 
Strong 2.911 3.541 4.156 

Overdet. 4.286 4.874 5.470 

0.9165 Weak 2.904 3.659 4.28 1 
Strong 3.123 3.761 4.383 

Overdet. 3.946 4.543 5.143 

0.9798 Weak 2.642 3.403 4.373 
Strong 3.591 4.122 4.727 

Overdet. 3.619 4.305 4.919 

0.995 Weak 2.684 3.249 4.104 
Strong 3.926 4.547 5.092 

Overdet. 3.578 4.215 4.864 

4.437 2.022 
4.438 2.021 
8.198 4.05 1 

4.590 2.022 
4.592 2.020 
6.598 1.993 

4.744 2.022 
4.765 2.022 
6.071 1.999 

4.891 2.026 
4.994 2.03 1 
5.745 2.000 

5.037 2.206 
5.357 2.093 
5.521 1.999 

4.737 2.103 
5.630 1.805 
5.489 2.079 

Nofe. Ellipse, p = sin(z), 4 given, even nodal spacing. 
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TABLE III 

E, Convergence Rates for Outer Problem 

e System 

-LOG,&, 
Approx. 

N=32 N=64 N=128 Conv. rate 

0.0 Weak 2.3132 2.9299 3.5393 2.024 
Strong 2.3162 2.9306 3.5395 2.023 

Overdet. 4.7798 6.0105 7.2208 4.021 

0.6 Weak 2.2921 2.9161 3.5288 2.035 
Strong 2.1563 2.7702 3.3789 2.022 

Overdet. 3.6176 4.2079 4.7974 1.958 

0.8660 Weak 1.8871 2.5365 3.1584 2.066 
Strong 1.8364 2.4573 3.0709 2.038 

Overdet. 3.0694 3.7652 4.3682 2.003 

0.9165 Weak 1.6468 2.3176 2.9447 2.083 
Strong 1.6530 2.2783 2.8956 2.051 

Overdet. 2.6897 3.5067 4.1247 2.053 

0.9798 Weak 0.8131 1.5688 2.2367 2.219 
Strong 0.928 1 1.5898 2.2171 2.154 

Overdet. 1.2885 2.6238 3.4247 2.661 

0.9950 Weak 0.5428 0.6898 1.4458 2.511 
Strong 0.1215 0.8045 1.4655 2.196 

Overdet. 0.2512 1.1748 2.5264 4.490 

Note. Ellipse, fl = l/z, 0 is given even nodal spacing. 

the overdetermined system are the best for all cases tested. The convergence rates 
approach 2.0 for the weak and strong systems. The convergence rates of the 
overdetermined system also approach 2.0 except at e=O, which again exhibits 
fourth-order convergence. The apparent high convergence rate for the overdeter- 
mined system on highly eccentric ellipses returns to second order as N-t cc. As the 
eccentricity increases, E2 increases for all systems due to the more rapid variation 
of the function and the kernel. 

Since our numerical model uses piecewise-linear representation for the potential 
function, we expect second-order convergence. However, for some cases, the 
convergence rates of the overdetermined system approach fourth order due to the 
cancellation of errors between the weak and the strong systems. Our examples 
show that these cancellations occur when the contour is circular (or nearly so) 
with uniformly spaced nodes. Some calculations not described here have shown 
third- and sixth-order convergence for the strong and overdetermined systems, 
respectively, when a cubic-spline representation is used for /3. 
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5.2. Nonuniform Nodal Spacing 

Sometimes nonuniform nodal spacing is desirable when solution refinement is 
needed due to large solution gradients. Also, the nodal spacing in problems with 
convective nodes such as free surface flow problems becomes nonuniform. This can 
cause numerical instabilities, so that a filtering scheme or a regridding scheme to 
maintain uniform spacing is needed [ 111. 

Figures 8a and b show the same example as in Fig. 3a, except that node 1 is 

: 
; 3.0 

2.0 

1.0 

i b 0.0 

-I .o 

-2.0 

-3.0 

Node number 

b 

I , I I 

0 16 32 48 64 
Node number 

FIG. 8. Error distributions for nonuniformly spaced nodes (inner problem, fi = sin(z), 4 is given): 
(a) Node 1 moved 0.1 of uniform spacing towards node 2. (b) Node 1 moved 0.5 of uniform spacing 
towards node 2. 
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moved towards node 2 by the stated fraction of the otherwise uniform spacing. 
In this case, the real part of r,, is no longer small. Moreover, the dominant 
off-diagonal terms r,- l,k and r,+ l,k are also changed significantly while the 
imaginary part of r,, remains around -x. The results show that the strong and 
overdetermined system errors are affected only near that nonuniformly spaced 
node. As the nonuniformity increases, the solution of the weak system deteriorates 
globally due to the zig-zag instability. However, if a numerical filter were used to 
eliminate oscillations with wavelengths equal to the node spacing, the weak system 
error is comparable with the strong system and is again of opposite sign. This is 
why the solution for the overdetermined system remains very good. Note that the 
error curves of the overdetermined system cannot be distinguished from the axis 
except near the moved node, especially when the nonuniformity is small as in 
Fig. 8a. 

The correlation between Zf) and the solution error is still strong for strong 
systems, except around the k th node, but it is very poor for the weak system. The 
computing time for the weak system increases rapidly as the nonuniformity 
increases, since the number of iterations grows rapidly as the matrix becomes more 
numerically singular. 

It can be shown that the order of csystem has large reductions in error, especially 
when the nonuniformities are small. 

5.3. Mixed Boundary Condition Problems 

When the boundary contour is composed of both aR, and aR,, the intersecting 
node can present a difficulty even without any geometric discontinuity. We could 
expect the solution to be singular at the intersecting node. We also would usually 
expect that the change in boundary conditions to occur at a corner in the boundary 
contour (which brings other difficulties that will be discussed in Section 5.5). We do 
not consider either case here. Either 4 or Ic/, or both can be treated as known at the 
intersecting node. When both are described, the method is often considered as 
“double nodes” in boundary integral methods, and is shown in some cases to give 
improved results [ 111. 

We examine a circular contour with 4 given on the upper half (y > 0) and JI on 
the lower half. Figure 9 shows the error distribution curves for two cases when 
p = sin(z). Only one boundary condition is prescribed at each node in Fig. 9a, while 
both 4 and I(/ are given at the intersecting nodes in Fig. 9b. In either cases the error 
of the overdetermined system is much smaller while the weak system solution 
again shows oscillatory behavior. The error is reduced slightly by prescribing both 
boundary conditions to the nodes on the x-axis, i.e., nodes 1 and 33. 

E2 for these two cases are compared in Fig. 10. The solutions when the addi- 
tional known boundary constraints are used are better for all three systems. Con- 
vergence rates remain the same and the improvement in accuracy is small. There is 
also no large local error at the intersection point. We conclude that the change in 
boundary condition type by itself is not difficult to handle computationally. 
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FIG. 9. Error distribution for a mixed boundary type problem (circular contour, N = 64, inner 
problem, b = sin(z)): dotted line-strong system; dashed line-weak system (overdetermined system 
errors not shown because they are too small at this scale). (a) Only one boundary condition prescribed 
on nodes 1 and 33. (b) Both d, and $ are given at the intersecting nodes 1 and 33. 
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FIG. 10. Error convergence of mixed type problems (circular contour, inner problem, /I= e-l’): 
squares-weak system; triangles-strong system; circles-overdetermined system; dashed line-both 
conditions prescribed at intersecting nodes; solid line+ne condition prescribed at intersecting nodes. 

5.4. Singularity Near Contour 

When the boundary condition values change abruptly due to nearby singularities, 
the solution error at nodes near those singularities is expected to increase. As an 
example, the error for a unit radius circular contour where the solution has a simple 
pole near the contour is examined, i.e., 4 is given as the real part of 

fi= l 
z-(1 +&)’ 

where E is a small positive constant. The solution errors for + of the strong system 
increase mainly at nodes near the singularity (near node l), while those of the weak 
system exhibit oscillatory behavior peaking near the singularity, as shown in 
Fig. lla. As E increases, the oscillation amplitude diminishes and the weak system 
finally recovers an error opposite to the strong system. 

E, shown in Fig. 12 again show the advantage of the overdetermined system in 
accuracy and convergence rate. The convergence rate for the overdetermined system 
is again 4.0 and those of the other systems are 2.0. For this singular function, the 
nodal spacing must be less than E before the asymptotic convergence rate is 
achieved. We note that the weak system is unstable due to an abrupt change in Ii*), 
which again implies that the matrix of the weak system is nearly singular. 
The oscillation amplitude of the weak system for this example was particularly 
dependent on the convergence criteria of the conjugate gradient iteration procedure. 
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FIG. 11. Error distributions for singular function case (circular contour, inner problem, 
q4 = Re{ (l/(z - (1 + E))} is given): dotted line-strong system; dashed line-weak system; solid 
line-overdetermined system. (a) E = 0.125; (b) E = 0.5. 

5.5. Contours with Corners 

The boundary integral accuracy is known to deteriorate in the vicinity of contour 
corners due to large geometric curvature. Moreover, the solution is usually singular 
at corners. Grisvard [12] has the most mathematically complete discussion of 
numerical singularities arising from the non-smooth domain for elliptic boundary 
value problems. Pina, Fernandes, and Brebbia [ 131 suggest using mesh refinements 
to overcome the difficulties of nonoptimal convergence arising from an irregular 
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FIG. 12. E, errors for singular function case (circular contour, inner problem, 0 is given, E = 0.25): 
dotted line-strong system; dashed line-weak system; solid line--overdetermined system. 

boundary contour. If the solution is known to be singular or to vary rapidly at a 
corner, one can also try refined meshes (Lin, Newman, and Yue [14]) or a 
modified variable made by subtracting out the local singular solutions from the 
original variable (Kelmanson [7]) to enhance the accuracy. Mesh refinements near 
corner can create difficulties with numerical instability such as at the free surface of 
the wave maker problem [ 111. 

Even if the solution is not singular at a corner, error is induced in large part by 
the contribution from the abrupt change of geometric curvature. This can be seen 
in Eq. (17) for I, . (*I At a corner, the term (zk+ 1 - ik)* - (zkP I - ik)* is not small. 
If fl”(ik) is nonzero at the corner, the error in numerical integration will be much 
larger there. In this case, the error has its maximum near the corner and can spread 
to the entire contour. 

A modified circular contour with a corner (Fig. 13) is used to test the effects of 
the corner on the solution accuracy. The nodal spacing is adjusted along the 
straight segments of the contour to ensure the same number of nodes in each 
quadrant of the complex plane. In this case, the imaginary part of Z,, at the corner 
stays at -n/2 as the number of nodes increases. However, the off-diagonal influence 
coefficients are strongly affected by the corner and any refinement there. 

As Fig. 14a shows, the error of the strong system is concentrated at the corner 
while staying at the previous error levels on the smooth part of the contour as 
shown in Fig. 3a. The error of the weak system solution oscillates over the entire 
contour. However, if a numerical filter were used to eliminate oscillations with 
wavelengths equal to the node spacing, the weak system would actually have a 
smaller error than the strong system. The computing time (the number of itera- 

581/84/Z-12 
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FIG. 13. Moditied circular contour with a corner. 

tions) to solve the weak system increases rapidly due to the corner. The solution of 
the overdetermined system is still significantly better, but the maximum error is one 
thousand times greater than the solution of the overdetermined system for the 
smooth contour shown in Fig. 3a. All three approaches show second-order 
convergence for contours with corners. 

The given solution for this example is analytic at the corner, but we still have 
very grave computational difficulties there. To make the integration error smaller, 
we develop a modified complex potential to make I p) = 0 at the corner by defining 

PO(Z) = B - f(z - &I)* p”(bJ, (19) 

where <,, is the coordinate of the corner. Thus, the second derivative of the modified 
complex potential p,, is forced to be zero at the corner. This eliminates the highest- 
order error term in our piecewise-linear integration routine (Eq. (16)) at the corner. 

Figure 14b shows improved results using this modification, especially at the 
corner. All six solutions (weak, strong, and overdetermined systems for both the 
modified and unmodified formulations) still appear to be second-order convergent 
for contours with corners. However, the E2 or E, for fixed N are significantly 
improved by the modified method. For this example, with N= 64, these errors are 
reduced by a factor of 50. 

These results suggest an iterative method for more accurate solutions to nonte~t 
problems, when the unknown value of a”(&) is updated to a more correct value. 
Further developments of this method are required for problems having more than 
one corner and for the outer problems. It is also expected that even more accurate 
solutions can be obtained by requiring the higher derivatives of the modified 
complex potential to be zero at corners. 
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FIG. 14. Error distribution for a corner problem (inner problem, /I = sin(z), 4 is given, comer node 
is 7): dotted line-strong system; dashed line-weak system; solid line-overdetermined system. 
(a) Unmodified; (b) Modified. 

6. DESINGULARIZED BOUNDARY INTEGRAL METHOD 

Patterson and Sheikh [lS] introduce a regular boundary integral method by 
moving the singularity of the fundamental solution away from the boundary 
contour. Their rationale for doing this appears to be chiefly for desingularizing 
the kernel. Hence, all integrals can be computed numerically. They also claim 
the method “tolerates higher order singularities” and base these conclusions on 
comparisons with finite element methods for elastostatic problems. 
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We show here that moving zk in Eq. (2) well outside the boundary has several 
advantages over the standard approach. While we do not perform the integrals by 
simple quadrature (we still use Eq. (8)), it is clear that numerical integration would 
no longer seriously affect the results. The determination of the influence coefficients 
is still simpler, since special cases are not required (as when integration passes 
through a singular point of the kernel). Now, however, one must decide where to 
locate the kernel singularities. 

We use the two strategies for locating the kernel singularities outside the contour. 
The first strategy places zk on the perpendicular bisector of the straight line between 
adjacent nodes at a distance f times the local node spacing, Izk - zk- i(, away from 
the straight line. This strategy has two potential difficulties. If f is too small, the 
singular point may lie inside an actual convex-curved contour. Iff is too large, the 
singular point may lie inside the domain of a highly contorted contour. The second 
strategy places all singular points on a circle whose center is roughly at the centroid 
of the contour. This strategy avoids the difftculties of the first, but it may not place 
the kernel singularities sufliciently close to the contour to capture nearly singular 
behavior of the solution. The second strategy also has the freedom of placing any 
number of kernel singularities on the circle, and hence, the algebraic system can 
become more or less overdetermined. 

Figure 15 shows the error computed using the first strategy with two different 
values off; in this case the nodes are placed evenly on a circular contour with 
/? = sin z. Here, we see that the convergence is exponential and that the overdeter- 
mined system is again the best. Figure 15 indicates that placing the singularities 
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FIG. 15. Convergence for desingularized boundary integral method (circular contour, inner problem, 
b = sin(z), 4 is given): squares-weak system; trianglesjtrong system; circles-verdetermined system; 
dashed line--f = 1; solid line--f = 2. 
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FIG. 16. Effect of desingularization parameter on error (circular contour, inner problem, N = 16, 
/I = sin(z), 4 is given). 

further from the contour is preferable. Figure 16 shows this to be the case for the 
same example with fixed N= 16. However, a price is paid in that the algebraic 
system becomes less diagonally dominant as f increases, requiring more iterations 
and a tighter tolerance on the convergence parameter to achieve the acquired 
accuracy. For this contour we note that when f < (1 - cos(rc/N))/sin(rr/N) x 0.05 for 
N = 16, the singular point actually moves inside the contour. Figure 16 shows this 
happens without greatly changing the error. 

Figure 17 also shows exponential convergence for the circular contour when the 
solution is singular outside the domain, as before /I = l/(z - (1 + E)). In this case, a 
semi-log plot indicates the true exponential character of the convergence. Only the 
overdetermined results are shown since the weak and strong system results are 
nearly as good. The nodal spacing must be small compared to E for exponential 
convergence to be achieved. As a result, the convergence when E = 0.1 (not shown) 
is very poor all the way to N = 64. As might be expected, the most accurate solu- 
tions are no longer obtained when f is large, since placing the kernel singularities 
further away cannot capture the effect of solution singularities close to the contour. 

For noncircular contours, Fig. 18 shows that the overdetermined system still has 
smaller errors, although not significantly smaller than those for the desingularized 
solution of the strong or weak system. As before for noncircular contours, all 
systems have second-order convergence. (The weak system is not shown since its 
results are very similar to the strong system.) While the desingularized method 
greatly improves the accuracy of the weak and strong system, it only slightly 
improves the accuracy of the overdetermined system. 

For the examples in Fig. 15-18, the desingularized method is better than the 
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FIG. 18. Convergence comparison for elliptical contours (ellipse, e = 0.436, inner problem, B = sin(z), 
4 is given): triangles-strong system; circles-overdetermined system; dashed line-standard method; 
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TABLE IV 

E, for various N, (N = 16) 

Combined weak and strong Strong 

8 
12 
15 
16 
17 
31 
32 
33 
34 
64 

- 3.373 
-4.217 
- 4.671 - 
-4.677 -3.600 
-4.677 - 3.373 

-4.043 
-4.678 -4.140 

- 4.090 
- -4.127 

-4.007 

method of Greenhow et al. However, both strategies of placing the kernel 
singularities off the contour do not yield quite as accurate results as the standard 
approach when the contour has a corner. The convergence rate is still the same and 
the absolute errors increase slightly (not shown but typically 25%). Further work 
is required to determine how to place the singular points next to the contour 
corners; however, our computations show that decreasing f or R, near the corners 
is not beneficial, even when no solution singularity exists there. 

The second strategy of desingularization allows an arbitrary number of kernel 
singularities to be used in formulating the algebraic system. When the real and 
imaginary systems are used, the number of singular points, N,, can be less than the 
number of nodes, N, actually N, > N/2. Table IV shows typical error results using 
variable N,. All results are for a unit circle contour, N = 16, and j? = sin z, with N, 
singular points equally spaced on a radius R, = 1.5. Table IV shows that N, can be 
reduced below N. Increasing N, further increases the accuracy insignificantly. 
However, increasing N, for the strong equations to overconstrain the system can be 
beneficial if N, is twice N. Table IV does not show that overdetermining the 
algebraic system in this manner is more expensive: more logarithms must be 
computed to form the influence the matrix and the resulting system is not as 
diagonally dominant (more iterations are required to solve the algebraic system). 

7. CONCLUSIONS 

Error analysis of complex variable boundary integral methods is made by trunca- 
tion error analysis and numerical investigation. The overdetermined system is the 
most efficient and accurate in almost all cases by averaging errors of the opposite 
sign for the solutions of the strong and weak systems. The convergence rate of the 
overdetermined system is fourth-order for circular contours, while the other systems 
exhibit second-order convergence. When the contour is not circular, the con- 
vergence for all three systems is second-order, but the overdetermined system is 
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significantly more accurate for moderate N. All systems have difficulties at contour 
corners, which can be alleviated by introducing a modified complex potential such 
that the derivatives are zero at the corner. The overdetermined system takes the 
fewest number of iterations in our conjugate gradient iteration procedure. As a 
result, the computational time is less than twice that of the weak or strong system. 
The increased accuracy of this method more than repays this additional cost. 

For circular contours, exponential convergence can be achieved by kernel 
desingularization. The exponential convergence is destroyed when nodes are 
unevenly placed. The overdetermined system is, for the most part, the most efficient. 
This modification performs poorly when a contour corner is present. 

The same approach may be extended to 3-dimensional potential problems by 
using two sets of integral equations, one of which is derived from Green’s theorem 
and the other the normal derivative of Green’s theorem. Hence, the advantages of 
solving an overdetermined system may yield greater efficiency and accuracy for 
3-dimensional problems as well. 
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